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ABSTRACT

This paper proposes a hierarchical, fine-grained and interpretable
latent variable model for prosody based on the Tacotron 2 text-to-
speech model. It achieves multi-resolution modeling of prosody by
conditioning finer level representations on coarser level ones. Ad-
ditionally, it imposes hierarchical conditioning across all latent di-
mensions using a conditional variational auto-encoder (VAE) with an
auto-regressive structure. Evaluation of reconstruction performance
illustrates that the new structure does not degrade the model while
allowing better interpretability. Interpretations of prosody attributes
are provided together with the comparison between word-level and
phone-level prosody representations. Moreover, both qualitative and
quantitative evaluations are used to demonstrate the improvement in
the disentanglement of the latent dimensions.

Index Terms— text-to-speech, Tacotron 2, fine-grained VAE,
hierarchical

1. INTRODUCTION

Significant developments have taken place in the neural end-to-end
text-to-speech (TTS) synthesis models for generating high fidelity
speech with a simplified pipeline [[1H4]. Such systems usually incor-
porate an encoder-decoder neural network architecture [5] that maps
a given text sequence to a sequence of acoustic features. More recent
advancement in such models enables the use of crowd-sourced data
by disentangling and controlling different attributes such as speaker
identity, noise, recording channels as well as prosody [6-8]]. The
focus of this paper, prosody, is a collection of attributes including
fundamental frequency (Fp), energy and duration [9]. Efforts have
been made to model and control these attributes by factorizing the
latent attributes (e.g. prosody) from observed attributes (e.g. speaker).
Although most of these works use latent representations at utterance
level which captures the salient features of the utterance [64[10H12],
fine-grained prosody that are aligned with the phone sequence can
be captured using techniques recently proposed in [13[]. This model
provides a localized prosody control that achieves more variability
and higher robustness to speaker perturbations.

Even though prosody attributes such as Fy and energy can be
treated as latent features, interpreting the phone-level latent space is
still difficult since latent dimensions can be entangled with each other.
Moreover, coherence of the prosody within a word (e.g. accented
syllables), noise level and channel properties are important attributes
not captured at the phone-level alone. Respecting the hierarchical
nature of spoken language and aiming at interpretation of prosody
at fine-scale such as Fp for a vowel, this paper aims to achieve
disentangled control of each prosody attribute at different levels.

This paper proposes a multilevel model based on Tacotron 2 [[14]]
integrated with a hierarchical latent variable model. In addition to the
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prosody representation at utterance level, the representation is also
extracted at word and phone levels. Apart from utterance-level char-
acteristics such as noise and channel properties, phone-level prosodic
features are expected to capture fine-grained information associated
with each phone, and word-level features are expected to capture the
prosody at each word while maintaining a natural prosody structure
within the word. To better interpret the representation of each latent
dimension, the original VAE is replaced by a conditional VAE driven
by the information contained in the previous latent dimensions. This
setup gives a hierarchy where finer level features are conditioned on
coarser, and latent variables at each level are hierarchically factorized.
The proposed model is thus referred to as a fully-hierarchical VAE.
Furthermore, imposing a training schedule for each latent dimension
results in a phone-level representation which reflects a consistent
ordering of prosody attributes. Finally, we assess the disentanglement
property of our model on three most significant attributes.

2. PRIOR WORK

Abundant research has been performed on learning latent representa-
tions for styles and prosody [15}|16] such as the use of an utterance-
level VAE in [17]. Our multilevel model is based on the fine-grained
VAE structure which extends the idea in [13]], and is closely related
to the hierarchical VQVAE model in [|[18[]. While the latter uses down
sampling to extract coarser features for image processing, our pro-
posed model takes advantage of the hierarchical structure of spoken
language. The multilevel alignment is also similar to the multilevel
information extraction model proposed by [19].

Meanwhile, exhaustive exploration has been made in the unsu-
pervised learning of disentangled latent representations these years
in various scenarios including speech recognition [20l21]]. Progress
have been made mostly in the direction of learning independently
distributed latent variables without associating them with the actual
latent factors [22H24]. However, [25]] demonstrated the impossibility
of unsupervised learning of disentangled representations without any
inductive bias. They pointed out that there exists an infinite num-
ber of bijective mappings from the learned latent space to another
space with the same marginal distribution, but the two spaces are
fully entangled. Other works try to learn disentangled representa-
tions via semi-supervised learning [26-28]] that guides a subset of
latent variables to learn some labelled features, or via adversarial
training [29//30]. The most similar hierarchical decomposition to our
approach is proposed by [31]], but the intention of this decomposition
is to facilitate learning statistically independent random variables.

3. MULTILEVEL PROSODY MODELING STRUCTURE

Different from utterance-level VAE [6] where a single latent feature
is extracted for each utterance, the fine-grained VAE [13] aligns the
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Fig. 1. Multilevel fine-grained VAE structure on the encoder side.
Phone-level alignment implemented with a location-sensitive atten-
tion. Utterance-level latent features can be extracted separately and
used as input to steps 3), @ and (3.

target spectrogram with the phone sequence and extract a sequence of
phone-level latent prosody features. These latent prosody features are
concatenated with their corresponding phone encodings before send-
ing to the decoder. Extending the fine-grained VAE, an illustration of
our proposed multilevel model is shown in Fig.[T]

This structure is integrated with the encoder of the Tacotron-
2 [|14]). Location-sensitive attention [32] is used to align the target
spectrogram with encodings of each phone at step 1. After the aligned
target spectrogram is obtained, the average of spectrograms associated
with phones in each word is calculated using the known phone-word
alignment. The word-level latent prosody features are then extracted
from these averaged spectrograms. Phone-level latent features are
extracted conditioning on word-level latent features, and both fea-
tures are concatenated using the phone-word alignment again. These
features are used by the decoder for reconstruction. The system is
optimized with the multilevel evidence lower bound (ELBO):

L(p,q) = Eq(zx) [logp(X | Y, 2)]
=B 201 Baay, 1% [Dxu(a(2h | X, 25,) || p(2h))]
— B2 Yopo1 Drwla(zy | X) | p(2i) | (1)

where M is the number of words, N is the number of phones and
Bs have the same function as [22]. z refers to the sequence of con-
catenated phone and word-level latent features. f(n) maps the phone
index n to the corresponding word index. z* and z” represent latent
features associated with each word and each phone respectively. The
model incorporates the utterance-level feature z* by conditioning
other fine-grained latent features on the utterance level latent one, and
subtracting B3 Dxr(q(z" | X) || p(z")) in Eq.(I) accordingly. For a
more complete model one could also introduce the dependency on text
and speaker information for the posterior, e.g. ¢(z% | X, Y%, S, z}))
and q(z,, | X, Y}, S) where S is the speaker embedding and Y
and Y? for phone and word encodings.

4. INTERPRETABLE CONDITIONAL VAE STRUCTURE

In the previous multilevel structure, the VAE layer models the data
distribution in the latent space as a multi-dimensional Gaussian dis-
tribution with diagonal covariance matrices, which is based on the
assumption that different latent dimensions have independent effects
to the prosody attributes. A corresponding graphical model is illus-
trated in Fig. ] where the graph with label 1 shows the generation
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Fig. 2. Left: graphical models for a 3-dimensional latent space. (D)
shows the generation process, while (2) and (3) show the inference
process. Right: conditional VAE structure where Proj. is a projection
layer mapping each latent dimension to a higher dimension.

sub-graph and label 2 shows the corresponding inference sub-graph.
When inferring the posterior of z2, the model in label 2 where z are
independent of each other indicates when the observation X is given,
knowing what z; represents does not provide any further information.
However, if latent dimensions control disentangled factors and 27 is
known to represent the energy of the phone, it adds extra information
to z2 indicating that z2 captures attributes other than energy. There-
fore, this conditional dependency as shown by the graph with label 3
should be modeled when inferring the posterior distribution.

To incorporate the dependency into inference, we extend the hier-
archical structure described in the previous section further to include
a conditional VAE according to an auto-regressive decomposition
of the posterior. The model structure is shown in the right part of
Fig.[2] Unlike auto-regressive density estimators [33|[34] which uses
recurrent structures directly on top of the latent variables, our recur-
rent model conditions on the projection of latent variables and extract
latent dimensions one at a time. Specifically, when extracting the k-th
latent dimension, the input to the VAE is the aligned spectrogram
concatenated with the summation of all previously extracted latent
features. Because these latent dimensions after projection are directly
used by the decoder, they are effectively representing the prosody
attributes being captured. Using these features with the aligned spec-
trogram as inputs to the VAE implicitly encourages the current latent
dimension £ to extract information about the prosody attribute other
than what has already been represented. The training objective for
this VAE model can still be written in the ELBO form as shown
in Eq. (2)), where expectation is estimated by single sample for the
KL-divergence between the auto-regressive posterior ¢(z | X) and
the prior p(z).

L(p,q) =Eqzx) logp(X | Y, z)]
— B4 Dxu(a(zr | Zin—1,X) || p(2x)), (@)

where Z.,—1 are samples of dimensions 1 to k — 1 from their pos-
terior distributions. The prior uses the isometric standard normal
distribution for each latent dimension. When applied to the multilevel
framework, this loss function is minimized at each time step for each
level and the subscription n and m in Eq. (I) for phone and word
indices can be directly added to each latent variable. Combining the
two approaches where auto-regressive decomposition of the posterior
is applied across different levels and different latent dimensions, the
model thus covers the full hierarchy from phone to utterance level.



Finally, disentangled prosody features are observed to be ex-
tracted following an energy-duration- Fp order guided by scheduled
training across latent dimensions. Scheduled training refers to the
process where the first latent dimension is trained for a certain num-
ber of steps before the second dimension starts to train. The rest of
the dimensions are started consecutively in the same way. Therefore,
when scheduling is imposed together with the conditional VAE, the
first latent dimension will capture the energy information, and the
second dimension being aware that energy has been represented by
the first dimension, will seek for representations of the duration.

5. EXPERIMENTS

The proposed models are evaluated on the LibriTTS multi-speaker au-
diobook dataset [35] and the Blizzard Challenge 2013 single-speaker
audiobook dataset [36]. LibriTTS includes approximately 585 hours
of read English audiobooks at 24kHz sampling rate. It covers a
wide range of speakers, recording conditions and speaking styles.
The latent space is expected to control the prosody without affecting
speaker characteristics. On the other hand, the Blizzard Challenge
2013 dataset contains 147 hours US English speech with highly vary-
ing prosody, recorded by a female professional speaker.

Three attributes are considered in this paper for fine-grained
prosody interpretation including Fp, energy and duration. To quanti-
tatively evaluate each attributes, we leverage the decoder alignment
attention weights to obtain the duration of the phone by counting the
frames which have a peak value at that specific phone in their atten-
tion weights. After obtaining the duration frames n; to n2 and also
converting to signal sample indices ¢; to t2, the energy can be esti-
mated using the average signal magnitude in [¢1, t2 — 1] divided by the
average signal magnitude of the whole utterance. Fy can be similarly
measured using the average Fy estimated from an Fj tracker [37]
among the frames in [n1,n2 — 1]. To decrease the variance due to
bad alignments, we exclude 50 samples at both margins.

Finally, the mel-cepstral distortion (MCD), the Fy Frame Error
(FFE) [38]], which is a combination of the Gross Pitch Error (GPE)
and the Voicing Decision Error (VDE), are used to quantify the
reconstruction performance. FFE evaluates the reconstruction of the
Fy track, and MCD evaluates the timbral distortion. We strongly
recommend readers to listen to the samples on the demo page [39].

5.1. Reconstruction Performance

Table|l|shows reconstruction performance measured using FFE and
MCD;3 for the first 13 MFCCs. Lower is better for both metrics.
Both the fine-grained VAE with 3-dimensional latent features and the
fully-hierarchical VAE achieve similar reconstruction performance.
Furthermore, progressive improvements from global to the system
with 3-dimensional latent space can be interpreted: By introduc-
ing fine-grained VAE, there is a significant drop in VDE as the
fine-grained VAE could capture phone-level energy and duration
information. Conditioning the posterior distribution on the speaker
embedding at the encoder side significantly reduced GPE because the
speaker identity is closely related to the average Fp. Increasing the
latent space size to 3 again significantly reduces the Fy error, which
confirms the fact that F information is the last to be captured.

5.2. Multilevel Controllability

The model selected for the demonstration is trained on the LibriTTS
dataset, and both phone-level and word-level latent spaces are 3-
dimensional. To illustrate the effect of controlling a single attribute
at different levels clearly, we traverse one dimension of the latent
features to control a certain attribute while keeping other dimensions

Model GPE VDE FFE MCD
Global VAE 039 034 052 16.0
Phone-level VAE 2d (no spk.) 0.33  0.18 0.35 10.5
Phone-level VAE 2d 025 015 0.28 9.0
Phone-level VAE 3d 0.10 0.12 0.18 8.6
Phone-level conditional VAE 0.10 0.13 0.20 9.2
Fully-hierarchical VAE 0.10 0.12 0.19 8.8

Table 1. Reconstruction performance results. 2d and 3d refers to the
dimension of the latent space. 3-dimensional latent space is used for
the conditional and the fully-hierarchical VAE. If not specified, the
posterior is conditioned on the speaker embedding.

constant. We demonstrate the control of a single vowel or a word
using phone-level or word-level latent features in Figd]

The effect on a single vowel is clear: Increasing F{ raised har-
monic frequencies within that phone. Increasing energy brightens
the area in the box while darkens the rest as signals are normalized.
Increasing duration stretched the corresponding area. Because the
influence at the word level contains a mixture of effects on vowels
and consonants, when changing the dimension controlling energy, the
duration of the phone n also changes which affects the duration of the
word. However, the most significant changes can still be interpreted
as the same three attributes exerted on all the vowels in the word.
Meanwhile, the traversing of each latent dimension for a phone at
different word prosody level is shown in Fig.[3] The control of each
latent attribute is linear when traversing each dimension from —1 to
+1. The word-level control shifts the phone-level curves up and down
as the phone-level latent features are conditioned on the word-level.

Furthermore, adjusting word-level prosody features also retains
the prosody distribution within a word while phone-level adjustment
required a manual assignment to keep it natural. This effect can be
evaluated by generating utterances with phone-level or word-level
independent sampling of one latent feature. Subjective mean opinion
score (MOS) test results are shown in Table 2| where random samples
of the latent dimension controlling the Fy were used. Consequently,
the word-level independent sampling sounds more natural, as the
prosody structure within each word is retained as neutral prosody.

Sampling level MOS

Neutral-prosody  4.04 +0.06
Phone-level 3.75 £0.09
Word-level 391 +£0.10

Table 2. MOS evaluation of speech generated with the phone/word
level independent Fp sampling. When sampling at one level, the
other is set to all zero to give neutral prosody.

5.3. Improved phone-level interpretability

The interpretability is improved by the disentanglement for the three
prosody attributes with the conditional VAE model. To illustrate
this improvement, a vowel was selected and its Fp, energy and du-
ration were measured with the method in Sec.[5} For each model,
100 samples were generated by drawing from a standard Gaussian
distribution for one latent dimension while keeping other dimensions
constant. Then, the standard deviations for measured attributes were
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calculated and scaled to lie in a similar range. Next, the ratio of
standard deviations between the attribute under control and the at-
tribute with the second-largest deviation was obtained to represent
the disentanglement in that dimension. This was repeated for each
latent dimension and the sum of the ratios for each repetition is used
to generally represent the degree of disentanglement. Though the
ratio is not capturing the exact entanglement, it still reflects the de-
gree of disentanglement because disentangled systems should have a
much larger variation in one factor than the other two when only one
latent dimension is varying. The experiment with each model was
repeated 5 times with different random seeds to show a consistent
improvement in disentanglement. Results are displayed in the form
of p & o in Table[3|and Table @] respectively, where y is the average
of summed ratios and ¢ is the standard deviation across repetitions.
Even though the standard deviation increases, using the condi-
tional VAE model on average improves the degree of disentanglement.
As the variation in prosody is found to be linearly correlated with the

Model Average variance ratio
Baseline fine-grained VAE 75+£1.0
DIP-VAE I 99+19
Fully-hierarchical VAE 11.5+23

Table 3. Variance ratio for different influencing control factors as-
sociated with a vowel on LibriTTS. DIP-VAE-I refers the model
proposed in which essentially enforces the covariance matrix of
the marginal posterior ¢(z) to be diagonal.

Model Average variance ratio
Baseline fine-grained VAE 5.8£0.8
Fully-hierarchical VAE 8.0+t29

Table 4. Variance ratio for different influencing control factors asso-
ciated with a vowel on the single-speaker audio book dataset.

latent dimension, each attribute is adjusted by traversing the corre-
sponding latent dimension. Additionally, when training schedule is
imposed on latent dimensions, the order of prosody attributes being
captured is always found to be energy, duration, and Fp on both
datasets. Energy is the amplitude of the signal which is directly re-
lated to the reconstruction loss and is easier to be captured, and Fp
is the last which coincides with the findings from the reconstruction
evaluation. Moreover, the first dimension captures the duration of
silence since that is the most significant attribute. The effect of latent
features for a consonant in spectrograms can also be categorized into
these three attributes but is hard to interpret directly from the audio.

6. CONCLUSIONS

A fully-hierarchical model to achieve multilevel control of prosody at-
tributes is proposed in this paper. The model consists of a hierarchical
structure across different levels covering phone, word and utterance.
Besides, a conditional VAE is applied at the phone and word-level
which also adopts a hierarchical structure across all latent dimensions.
Experimental results demonstrate improved interpretability by show-
ing improved disentanglement, and the order of prosody attributes to
be extracted is explained. Furthermore, the difference in phone and
word level control effects is also analyzed.
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